diff options
Diffstat (limited to 'openssl/vendor/0.9.8d/doc/crypto/pem.pod')
-rw-r--r-- | openssl/vendor/0.9.8d/doc/crypto/pem.pod | 476 |
1 files changed, 0 insertions, 476 deletions
diff --git a/openssl/vendor/0.9.8d/doc/crypto/pem.pod b/openssl/vendor/0.9.8d/doc/crypto/pem.pod deleted file mode 100644 index 4f9a27df..00000000 --- a/openssl/vendor/0.9.8d/doc/crypto/pem.pod +++ /dev/null @@ -1,476 +0,0 @@ -=pod - -=head1 NAME - -PEM - PEM routines - -=head1 SYNOPSIS - - #include <openssl/pem.h> - - EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, - pem_password_cb *cb, void *u); - - EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, - char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, - char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, - char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, - char *kstr, int klen, - pem_password_cb *cb, void *u); - - EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, - pem_password_cb *cb, void *u); - - EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); - int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); - - RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, - pem_password_cb *cb, void *u); - - RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, - pem_password_cb *cb, void *u); - - RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); - - int PEM_write_RSAPublicKey(FILE *fp, RSA *x); - - RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, - pem_password_cb *cb, void *u); - - RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); - - int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); - - DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, - pem_password_cb *cb, void *u); - - DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, - unsigned char *kstr, int klen, - pem_password_cb *cb, void *u); - - DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, - pem_password_cb *cb, void *u); - - DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); - - int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); - - DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); - - DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); - - int PEM_write_bio_DSAparams(BIO *bp, DSA *x); - - int PEM_write_DSAparams(FILE *fp, DSA *x); - - DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); - - DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); - - int PEM_write_bio_DHparams(BIO *bp, DH *x); - - int PEM_write_DHparams(FILE *fp, DH *x); - - X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); - - X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); - - int PEM_write_bio_X509(BIO *bp, X509 *x); - - int PEM_write_X509(FILE *fp, X509 *x); - - X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); - - X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); - - int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); - - int PEM_write_X509_AUX(FILE *fp, X509 *x); - - X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, - pem_password_cb *cb, void *u); - - X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); - - int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); - - int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); - - int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); - - X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, - pem_password_cb *cb, void *u); - X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, - pem_password_cb *cb, void *u); - int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); - int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); - - PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); - - PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); - - int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); - - int PEM_write_PKCS7(FILE *fp, PKCS7 *x); - - NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, - NETSCAPE_CERT_SEQUENCE **x, - pem_password_cb *cb, void *u); - - NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, - NETSCAPE_CERT_SEQUENCE **x, - pem_password_cb *cb, void *u); - - int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x); - - int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x); - -=head1 DESCRIPTION - -The PEM functions read or write structures in PEM format. In -this sense PEM format is simply base64 encoded data surrounded -by header lines. - -For more details about the meaning of arguments see the -B<PEM FUNCTION ARGUMENTS> section. - -Each operation has four functions associated with it. For -clarity the term "B<foobar> functions" will be used to collectively -refer to the PEM_read_bio_foobar(), PEM_read_foobar(), -PEM_write_bio_foobar() and PEM_write_foobar() functions. - -The B<PrivateKey> functions read or write a private key in -PEM format using an EVP_PKEY structure. The write routines use -"traditional" private key format and can handle both RSA and DSA -private keys. The read functions can additionally transparently -handle PKCS#8 format encrypted and unencrypted keys too. - -PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() -write a private key in an EVP_PKEY structure in PKCS#8 -EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption -algorithms. The B<cipher> argument specifies the encryption algoritm to -use: unlike all other PEM routines the encryption is applied at the -PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no -encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead. - -PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() -also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however -it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm -to use is specified in the B<nid> parameter and should be the NID of the -corresponding OBJECT IDENTIFIER (see NOTES section). - -The B<PUBKEY> functions process a public key using an EVP_PKEY -structure. The public key is encoded as a SubjectPublicKeyInfo -structure. - -The B<RSAPrivateKey> functions process an RSA private key using an -RSA structure. It handles the same formats as the B<PrivateKey> -functions but an error occurs if the private key is not RSA. - -The B<RSAPublicKey> functions process an RSA public key using an -RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey -structure. - -The B<RSA_PUBKEY> functions also process an RSA public key using -an RSA structure. However the public key is encoded using a -SubjectPublicKeyInfo structure and an error occurs if the public -key is not RSA. - -The B<DSAPrivateKey> functions process a DSA private key using a -DSA structure. It handles the same formats as the B<PrivateKey> -functions but an error occurs if the private key is not DSA. - -The B<DSA_PUBKEY> functions process a DSA public key using -a DSA structure. The public key is encoded using a -SubjectPublicKeyInfo structure and an error occurs if the public -key is not DSA. - -The B<DSAparams> functions process DSA parameters using a DSA -structure. The parameters are encoded using a foobar structure. - -The B<DHparams> functions process DH parameters using a DH -structure. The parameters are encoded using a PKCS#3 DHparameter -structure. - -The B<X509> functions process an X509 certificate using an X509 -structure. They will also process a trusted X509 certificate but -any trust settings are discarded. - -The B<X509_AUX> functions process a trusted X509 certificate using -an X509 structure. - -The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 -certificate request using an X509_REQ structure. The B<X509_REQ> -write functions use B<CERTIFICATE REQUEST> in the header whereas -the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> -(as required by some CAs). The B<X509_REQ> read functions will -handle either form so there are no B<X509_REQ_NEW> read functions. - -The B<X509_CRL> functions process an X509 CRL using an X509_CRL -structure. - -The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 -structure. - -The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate -Sequence using a NETSCAPE_CERT_SEQUENCE structure. - -=head1 PEM FUNCTION ARGUMENTS - -The PEM functions have many common arguments. - -The B<bp> BIO parameter (if present) specifies the BIO to read from -or write to. - -The B<fp> FILE parameter (if present) specifies the FILE pointer to -read from or write to. - -The PEM read functions all take an argument B<TYPE **x> and return -a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function -uses. If B<x> is NULL then the parameter is ignored. If B<x> is not -NULL but B<*x> is NULL then the structure returned will be written -to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made -to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections). -Irrespective of the value of B<x> a pointer to the structure is always -returned (or NULL if an error occurred). - -The PEM functions which write private keys take an B<enc> parameter -which specifies the encryption algorithm to use, encryption is done -at the PEM level. If this parameter is set to NULL then the private -key is written in unencrypted form. - -The B<cb> argument is the callback to use when querying for the pass -phrase used for encrypted PEM structures (normally only private keys). - -For the PEM write routines if the B<kstr> parameter is not NULL then -B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is -ignored. - -If the B<cb> parameters is set to NULL and the B<u> parameter is not -NULL then the B<u> parameter is interpreted as a null terminated string -to use as the passphrase. If both B<cb> and B<u> are NULL then the -default callback routine is used which will typically prompt for the -passphrase on the current terminal with echoing turned off. - -The default passphrase callback is sometimes inappropriate (for example -in a GUI application) so an alternative can be supplied. The callback -routine has the following form: - - int cb(char *buf, int size, int rwflag, void *u); - -B<buf> is the buffer to write the passphrase to. B<size> is the maximum -length of the passphrase (i.e. the size of buf). B<rwflag> is a flag -which is set to 0 when reading and 1 when writing. A typical routine -will ask the user to verify the passphrase (for example by prompting -for it twice) if B<rwflag> is 1. The B<u> parameter has the same -value as the B<u> parameter passed to the PEM routine. It allows -arbitrary data to be passed to the callback by the application -(for example a window handle in a GUI application). The callback -B<must> return the number of characters in the passphrase or 0 if -an error occurred. - -=head1 EXAMPLES - -Although the PEM routines take several arguments in almost all applications -most of them are set to 0 or NULL. - -Read a certificate in PEM format from a BIO: - - X509 *x; - x = PEM_read_bio_X509(bp, NULL, 0, NULL); - if (x == NULL) - { - /* Error */ - } - -Alternative method: - - X509 *x = NULL; - if (!PEM_read_bio_X509(bp, &x, 0, NULL)) - { - /* Error */ - } - -Write a certificate to a BIO: - - if (!PEM_write_bio_X509(bp, x)) - { - /* Error */ - } - -Write an unencrypted private key to a FILE pointer: - - if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) - { - /* Error */ - } - -Write a private key (using traditional format) to a BIO using -triple DES encryption, the pass phrase is prompted for: - - if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) - { - /* Error */ - } - -Write a private key (using PKCS#8 format) to a BIO using triple -DES encryption, using the pass phrase "hello": - - if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) - { - /* Error */ - } - -Read a private key from a BIO using the pass phrase "hello": - - key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); - if (key == NULL) - { - /* Error */ - } - -Read a private key from a BIO using a pass phrase callback: - - key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); - if (key == NULL) - { - /* Error */ - } - -Skeleton pass phrase callback: - - int pass_cb(char *buf, int size, int rwflag, void *u); - { - int len; - char *tmp; - /* We'd probably do something else if 'rwflag' is 1 */ - printf("Enter pass phrase for \"%s\"\n", u); - - /* get pass phrase, length 'len' into 'tmp' */ - tmp = "hello"; - len = strlen(tmp); - - if (len <= 0) return 0; - /* if too long, truncate */ - if (len > size) len = size; - memcpy(buf, tmp, len); - return len; - } - -=head1 NOTES - -The old B<PrivateKey> write routines are retained for compatibility. -New applications should write private keys using the -PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines -because they are more secure (they use an iteration count of 2048 whereas -the traditional routines use a count of 1) unless compatibility with older -versions of OpenSSL is important. - -The B<PrivateKey> read routines can be used in all applications because -they handle all formats transparently. - -A frequent cause of problems is attempting to use the PEM routines like -this: - - X509 *x; - PEM_read_bio_X509(bp, &x, 0, NULL); - -this is a bug because an attempt will be made to reuse the data at B<x> -which is an uninitialised pointer. - -=head1 PEM ENCRYPTION FORMAT - -This old B<PrivateKey> routines use a non standard technique for encryption. - -The private key (or other data) takes the following form: - - -----BEGIN RSA PRIVATE KEY----- - Proc-Type: 4,ENCRYPTED - DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 - - ...base64 encoded data... - -----END RSA PRIVATE KEY----- - -The line beginning DEK-Info contains two comma separated pieces of information: -the encryption algorithm name as used by EVP_get_cipherbyname() and an 8 -byte B<salt> encoded as a set of hexadecimal digits. - -After this is the base64 encoded encrypted data. - -The encryption key is determined using EVP_bytestokey(), using B<salt> and an -iteration count of 1. The IV used is the value of B<salt> and *not* the IV -returned by EVP_bytestokey(). - -=head1 BUGS - -The PEM read routines in some versions of OpenSSL will not correctly reuse -an existing structure. Therefore the following: - - PEM_read_bio_X509(bp, &x, 0, NULL); - -where B<x> already contains a valid certificate, may not work, whereas: - - X509_free(x); - x = PEM_read_bio_X509(bp, NULL, 0, NULL); - -is guaranteed to work. - -=head1 RETURN CODES - -The read routines return either a pointer to the structure read or NULL -if an error occurred. - -The write routines return 1 for success or 0 for failure. |