
Implementation experience with the two BPKI models

Having recently converted my code base to the single-trust-anchor model Russ recommended, I
thought it might be useful to share what I’ve learned. This may not apply to all implementations,
but it does apply to mine, and given what I understand of RIPE’s business model, it will probably
apply to RIPE’s implementation as well.

In spite of a strong desire to do so, I was not able to use exactly the same BPKI keys and certificates
for HTTPS and CMS. The reason for this is simple: each hosted entity in my engine has its own
BPKI, as does the hosting entity, but the HTTPS listener is shared. The only ways I know of
to avoid this would be to use separate listeners for each hosted entity, which scales poorly, or
to rely on the TLS “Server Name Indication” extension (RFC 4366 3.1) which is not yet widely
implemented.

TA

rpkid HTTPS server

HTTPS left-right client

CMS left-right

irdbd HTTPS left-right server

CMS left-right

IRBE HTTPS left-right client

CMS left-right
Alice_CA Ellen_CA

Alice
BSC EE

HTTPS up-down client

CMS up-down
Bob_CA Carol_CA Dave_CA

Ellen
BSC EE

HTTPS up-down client

CMS up-down
Frank_CA Ginny_CA Harry_CA

Bob
EE

HTTPS up-down

CMS up-down

Carol
EE

HTTPS up-down

CMS up-down

Dave
EE

HTTPS up-down

CMS up-down

Frank
EE

HTTPS up-down

CMS up-down

Ginny
EE

HTTPS up-down

CMS up-down

Bob
EE

HTTPS up-down

CMS up-down

Figure 1: Symmetric BPKI model

Figure 1 shows my engine’s view of the BPKI tree in the symmetric model. Black objects belong to
the hosting entity, blue objects belong to the hosted entities, red objects are cross-certified objects
from peers. The arrows indicate certificate issuance: solid arrows are the ones that my own
RPKI engine will care about during certificate validation, dotted arrows show the origin of EE

1



certificates my engine uses to sign things. “BSC” stands for “business signing context,” which is a
database object in my implementation representing the context needed to sign a CMS message or
TLS session.

Other than the above-mentioned annoyance with the HTTPS server certificate, the “symmetric”
BPKI model worked out pretty much as expected here. The certificate tree looks complicated,
but the set of certificates needed to build a particular validation chain is obvious, again excepting
the HTTPS server case, where client certificate is the first hint that the engine has of the client’s
identity, so the server must be prepared to accept any current client certificate.

TA

rpkid HTTPS server

HTTPS left-right client

CMS left-right

irdbd HTTPS left-right server

CMS left-right

IRBE HTTPS left-right client

CMS left-right
Alice_CA Ellen_CA

Bob_CA Carol_CA Dave_CA Frank_CA Ginny_CA Harry_CA

Alice-Bob
BSC EE

HTTPS up-down client

CMS up-down

Bob
EE

HTTPS up-down

CMS up-down

Alice-Carol
BSC EE

HTTPS up-down client

CMS up-down

Carol
EE

HTTPS up-down

CMS up-down

Alice-Dave
BSC EE

HTTPS up-down client

CMS up-down

Dave
EE

HTTPS up-down

CMS up-down

Ellen-Frank
BSC EE

HTTPS up-down client

CMS up-down

Frank
EE

HTTPS up-down

CMS up-down

Ellen-Ginny
BSC EE

HTTPS up-down client

CMS up-down

Ginny
EE

HTTPS up-down

CMS up-down

Ellen-Harry
BSC EE

HTTPS up-down client

CMS up-down

Bob
EE

HTTPS up-down

CMS up-down

Figure 2: Asymmetric BPKI model

Figure 2 shows my engine’s view of the BPKI tree in the asymmetric model. Note that not much
has changed here from the symmetric case. As far as I can tell, the asymmetric model is just as
complex for my engine as the symmetric model; the only real difference is that the engine has to
keep track of a larger number of BSC EE certificates in the asymmetric case.

2


