/* apps/spkac.c */ /* Written by Dr Stephen N Henson (shenson@bigfoot.com) for the OpenSSL * project 1999. Based on an original idea by Massimiliano Pala * (madwolf@openca.org). */ /* ==================================================================== * Copyright (c) 1999 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include "apps.h" #include <openssl/bio.h> #include <openssl/conf.h> #include <openssl/err.h> #include <openssl/evp.h> #include <openssl/lhash.h> #include <openssl/x509.h> #include <openssl/pem.h> #undef PROG #define PROG spkac_main /* -in arg - input file - default stdin * -out arg - output file - default stdout */ int MAIN(int, char **); int MAIN(int argc, char **argv) { ENGINE *e = NULL; int i,badops=0, ret = 1; BIO *in = NULL,*out = NULL; int verify=0,noout=0,pubkey=0; char *infile = NULL,*outfile = NULL,*prog; char *passargin = NULL, *passin = NULL; const char *spkac = "SPKAC", *spksect = "default"; char *spkstr = NULL; char *challenge = NULL, *keyfile = NULL; CONF *conf = NULL; NETSCAPE_SPKI *spki = NULL; EVP_PKEY *pkey = NULL; #ifndef OPENSSL_NO_ENGINE char *engine=NULL; #endif apps_startup(); if (!bio_err) bio_err = BIO_new_fp(stderr, BIO_NOCLOSE); if (!load_config(bio_err, NULL)) goto end; prog=argv[0]; argc--; argv++; while (argc >= 1) { if (strcmp(*argv,"-in") == 0) { if (--argc < 1) goto bad; infile= *(++argv); } else if (strcmp(*argv,"-out") == 0) { if (--argc < 1) goto bad; outfile= *(++argv); } else if (strcmp(*argv,"-passin") == 0) { if (--argc < 1) goto bad; passargin= *(++argv); } else if (strcmp(*argv,"-key") == 0) { if (--argc < 1) goto bad; keyfile= *(++argv); } else if (strcmp(*argv,"-challenge") == 0) { if (--argc < 1) goto bad; challenge= *(++argv); } else if (strcmp(*argv,"-spkac") == 0) { if (--argc < 1) goto bad; spkac= *(++argv); } else if (strcmp(*argv,"-spksect") == 0) { if (--argc < 1) goto bad; spksect= *(++argv); } #ifndef OPENSSL_NO_ENGINE else if (strcmp(*argv,"-engine") == 0) { if (--argc < 1) goto bad; engine= *(++argv); } #endif else if (strcmp(*argv,"-noout") == 0) noout=1; else if (strcmp(*argv,"-pubkey") == 0) pubkey=1; else if (strcmp(*argv,"-verify") == 0) verify=1; else badops = 1; argc--; argv++; } if (badops) { bad: BIO_printf(bio_err,"%s [options]\n",prog); BIO_printf(bio_err,"where options are\n"); BIO_printf(bio_err," -in arg input file\n"); BIO_printf(bio_err," -out arg output file\n"); BIO_printf(bio_err," -key arg create SPKAC using private key\n"); BIO_printf(bio_err," -passin arg input file pass phrase source\n"); BIO_printf(bio_err," -challenge arg challenge string\n"); BIO_printf(bio_err," -spkac arg alternative SPKAC name\n"); BIO_printf(bio_err," -noout don't print SPKAC\n"); BIO_printf(bio_err," -pubkey output public key\n"); BIO_printf(bio_err," -verify verify SPKAC signature\n"); #ifndef OPENSSL_NO_ENGINE BIO_printf(bio_err," -engine e use engine e, possibly a hardware device.\n"); #endif goto end; } ERR_load_crypto_strings(); if(!app_passwd(bio_err, passargin, NULL, &passin, NULL)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } #ifndef OPENSSL_NO_ENGINE e = setup_engine(bio_err, engine, 0); #endif if(keyfile) { pkey = load_key(bio_err, strcmp(keyfile, "-") ? keyfile : NULL, FORMAT_PEM, 1, passin, e, "private key"); if(!pkey) { goto end; } spki = NETSCAPE_SPKI_new(); if(challenge) ASN1_STRING_set(spki->spkac->challenge, challenge, (int)strlen(challenge)); NETSCAPE_SPKI_set_pubkey(spki, pkey); NETSCAPE_SPKI_sign(spki, pkey, EVP_md5()); spkstr = NETSCAPE_SPKI_b64_encode(spki); if (outfile) out = BIO_new_file(outfile, "w"); else { out = BIO_new_fp(stdout, BIO_NOCLOSE); #ifdef OPENSSL_SYS_VMS { BIO *tmpbio = BIO_new(BIO_f_linebuffer()); out = BIO_push(tmpbio, out); } #endif } if(!out) { BIO_printf(bio_err, "Error opening output file\n"); ERR_print_errors(bio_err); goto end; } BIO_printf(out, "SPKAC=%s\n", spkstr); OPENSSL_free(spkstr); ret = 0; goto end; } if (infile) in = BIO_new_file(infile, "r"); else in = BIO_new_fp(stdin, BIO_NOCLOSE); if(!in) { BIO_printf(bio_err, "Error opening input file\n"); ERR_print_errors(bio_err); goto end; } conf = NCONF_new(NULL); i = NCONF_load_bio(conf, in, NULL); if(!i) { BIO_printf(bio_err, "Error parsing config file\n"); ERR_print_errors(bio_err); goto end; } spkstr = NCONF_get_string(conf, spksect, spkac); if(!spkstr) { BIO_printf(bio_err, "Can't find SPKAC called \"%s\"\n", spkac); ERR_print_errors(bio_err); goto end; } spki = NETSCAPE_SPKI_b64_decode(spkstr, -1); if(!spki) { BIO_printf(bio_err, "Error loading SPKAC\n"); ERR_print_errors(bio_err); goto end; } if (outfile) out = BIO_new_file(outfile, "w"); else { out = BIO_new_fp(stdout, BIO_NOCLOSE); #ifdef OPENSSL_SYS_VMS { BIO *tmpbio = BIO_new(BIO_f_linebuffer()); out = BIO_push(tmpbio, out); } #endif } if(!out) { BIO_printf(bio_err, "Error opening output file\n"); ERR_print_errors(bio_err); goto end; } if(!noout) NETSCAPE_SPKI_print(out, spki); pkey = NETSCAPE_SPKI_get_pubkey(spki); if(verify) { i = NETSCAPE_SPKI_verify(spki, pkey); if(i) BIO_printf(bio_err, "Signature OK\n"); else { BIO_printf(bio_err, "Signature Failure\n"); ERR_print_errors(bio_err); goto end; } } if(pubkey) PEM_write_bio_PUBKEY(out, pkey); ret = 0; end: NCONF_free(conf); NETSCAPE_SPKI_free(spki); BIO_free(in); BIO_free_all(out); EVP_PKEY_free(pkey); if(passin) OPENSSL_free(passin); apps_shutdown(); OPENSSL_EXIT(ret); } '>155</a> <a id='n156' href='#n156'>156</a> <a id='n157' href='#n157'>157</a> <a id='n158' href='#n158'>158</a> <a id='n159' href='#n159'>159</a> <a id='n160' href='#n160'>160</a> <a id='n161' href='#n161'>161</a> <a id='n162' href='#n162'>162</a> <a id='n163' href='#n163'>163</a> <a id='n164' href='#n164'>164</a> <a id='n165' href='#n165'>165</a> <a id='n166' href='#n166'>166</a> <a id='n167' href='#n167'>167</a> <a id='n168' href='#n168'>168</a> <a id='n169' href='#n169'>169</a> <a id='n170' href='#n170'>170</a> <a id='n171' href='#n171'>171</a> <a id='n172' href='#n172'>172</a> <a id='n173' href='#n173'>173</a> <a id='n174' href='#n174'>174</a> <a id='n175' href='#n175'>175</a> <a id='n176' href='#n176'>176</a> <a id='n177' href='#n177'>177</a> <a id='n178' href='#n178'>178</a> <a id='n179' href='#n179'>179</a> <a id='n180' href='#n180'>180</a> <a id='n181' href='#n181'>181</a> <a id='n182' href='#n182'>182</a> <a id='n183' href='#n183'>183</a> <a id='n184' href='#n184'>184</a> <a id='n185' href='#n185'>185</a> <a id='n186' href='#n186'>186</a> <a id='n187' href='#n187'>187</a> <a id='n188' href='#n188'>188</a> <a id='n189' href='#n189'>189</a> <a id='n190' href='#n190'>190</a> <a id='n191' href='#n191'>191</a> <a id='n192' href='#n192'>192</a> <a id='n193' href='#n193'>193</a> <a id='n194' href='#n194'>194</a> <a id='n195' href='#n195'>195</a> <a id='n196' href='#n196'>196</a> <a id='n197' href='#n197'>197</a> <a id='n198' href='#n198'>198</a> <a id='n199' href='#n199'>199</a> <a id='n200' href='#n200'>200</a> <a id='n201' href='#n201'>201</a> <a id='n202' href='#n202'>202</a> <a id='n203' href='#n203'>203</a> <a id='n204' href='#n204'>204</a> <a id='n205' href='#n205'>205</a> <a id='n206' href='#n206'>206</a> <a id='n207' href='#n207'>207</a> <a id='n208' href='#n208'>208</a> <a id='n209' href='#n209'>209</a> <a id='n210' href='#n210'>210</a> <a id='n211' href='#n211'>211</a> <a id='n212' href='#n212'>212</a> <a id='n213' href='#n213'>213</a> <a id='n214' href='#n214'>214</a> <a id='n215' href='#n215'>215</a> <a id='n216' href='#n216'>216</a> <a id='n217' href='#n217'>217</a> <a id='n218' href='#n218'>218</a> <a id='n219' href='#n219'>219</a> <a id='n220' href='#n220'>220</a> <a id='n221' href='#n221'>221</a> <a id='n222' href='#n222'>222</a> <a id='n223' href='#n223'>223</a> <a id='n224' href='#n224'>224</a> <a id='n225' href='#n225'>225</a> <a id='n226' href='#n226'>226</a> <a id='n227' href='#n227'>227</a> <a id='n228' href='#n228'>228</a> <a id='n229' href='#n229'>229</a> <a id='n230' href='#n230'>230</a> <a id='n231' href='#n231'>231</a> <a id='n232' href='#n232'>232</a> <a id='n233' href='#n233'>233</a> <a id='n234' href='#n234'>234</a> <a id='n235' href='#n235'>235</a> <a id='n236' href='#n236'>236</a> <a id='n237' href='#n237'>237</a> <a id='n238' href='#n238'>238</a> <a id='n239' href='#n239'>239</a> <a id='n240' href='#n240'>240</a> <a id='n241' href='#n241'>241</a> <a id='n242' href='#n242'>242</a> <a id='n243' href='#n243'>243</a> <a id='n244' href='#n244'>244</a> <a id='n245' href='#n245'>245</a> <a id='n246' href='#n246'>246</a> <a id='n247' href='#n247'>247</a> <a id='n248' href='#n248'>248</a> <a id='n249' href='#n249'>249</a> <a id='n250' href='#n250'>250</a> <a id='n251' href='#n251'>251</a> <a id='n252' href='#n252'>252</a> <a id='n253' href='#n253'>253</a> <a id='n254' href='#n254'>254</a> <a id='n255' href='#n255'>255</a> <a id='n256' href='#n256'>256</a> <a id='n257' href='#n257'>257</a> <a id='n258' href='#n258'>258</a> <a id='n259' href='#n259'>259</a> <a id='n260' href='#n260'>260</a> <a id='n261' href='#n261'>261</a> <a id='n262' href='#n262'>262</a> <a id='n263' href='#n263'>263</a> <a id='n264' href='#n264'>264</a> <a id='n265' href='#n265'>265</a> <a id='n266' href='#n266'>266</a> <a id='n267' href='#n267'>267</a> <a id='n268' href='#n268'>268</a> <a id='n269' href='#n269'>269</a> <a id='n270' href='#n270'>270</a> <a id='n271' href='#n271'>271</a> <a id='n272' href='#n272'>272</a> <a id='n273' href='#n273'>273</a> <a id='n274' href='#n274'>274</a> <a id='n275' href='#n275'>275</a> <a id='n276' href='#n276'>276</a> <a id='n277' href='#n277'>277</a> <a id='n278' href='#n278'>278</a> <a id='n279' href='#n279'>279</a> <a id='n280' href='#n280'>280</a> <a id='n281' href='#n281'>281</a> <a id='n282' href='#n282'>282</a> <a id='n283' href='#n283'>283</a> <a id='n284' href='#n284'>284</a> <a id='n285' href='#n285'>285</a> <a id='n286' href='#n286'>286</a> <a id='n287' href='#n287'>287</a> <a id='n288' href='#n288'>288</a> <a id='n289' href='#n289'>289</a> <a id='n290' href='#n290'>290</a> <a id='n291' href='#n291'>291</a> <a id='n292' href='#n292'>292</a> <a id='n293' href='#n293'>293</a> <a id='n294' href='#n294'>294</a> <a id='n295' href='#n295'>295</a> <a id='n296' href='#n296'>296</a> <a id='n297' href='#n297'>297</a> <a id='n298' href='#n298'>298</a> <a id='n299' href='#n299'>299</a> <a id='n300' href='#n300'>300</a> <a id='n301' href='#n301'>301</a> <a id='n302' href='#n302'>302</a> <a id='n303' href='#n303'>303</a> <a id='n304' href='#n304'>304</a> <a id='n305' href='#n305'>305</a> <a id='n306' href='#n306'>306</a> <a id='n307' href='#n307'>307</a> <a id='n308' href='#n308'>308</a> <a id='n309' href='#n309'>309</a> <a id='n310' href='#n310'>310</a> <a id='n311' href='#n311'>311</a> <a id='n312' href='#n312'>312</a> <a id='n313' href='#n313'>313</a> <a id='n314' href='#n314'>314</a> <a id='n315' href='#n315'>315</a> <a id='n316' href='#n316'>316</a> <a id='n317' href='#n317'>317</a> <a id='n318' href='#n318'>318</a> <a id='n319' href='#n319'>319</a> <a id='n320' href='#n320'>320</a> <a id='n321' href='#n321'>321</a> <a id='n322' href='#n322'>322</a> <a id='n323' href='#n323'>323</a> <a id='n324' href='#n324'>324</a> <a id='n325' href='#n325'>325</a> <a id='n326' href='#n326'>326</a> <a id='n327' href='#n327'>327</a> <a id='n328' href='#n328'>328</a> <a id='n329' href='#n329'>329</a> <a id='n330' href='#n330'>330</a> <a id='n331' href='#n331'>331</a> <a id='n332' href='#n332'>332</a> <a id='n333' href='#n333'>333</a> <a id='n334' href='#n334'>334</a> <a id='n335' href='#n335'>335</a> <a id='n336' href='#n336'>336</a> <a id='n337' href='#n337'>337</a> <a id='n338' href='#n338'>338</a> <a id='n339' href='#n339'>339</a> <a id='n340' href='#n340'>340</a> <a id='n341' href='#n341'>341</a> <a id='n342' href='#n342'>342</a> <a id='n343' href='#n343'>343</a> <a id='n344' href='#n344'>344</a> <a id='n345' href='#n345'>345</a> <a id='n346' href='#n346'>346</a> <a id='n347' href='#n347'>347</a> <a id='n348' href='#n348'>348</a> <a id='n349' href='#n349'>349</a> <a id='n350' href='#n350'>350</a> <a id='n351' href='#n351'>351</a> <a id='n352' href='#n352'>352</a> <a id='n353' href='#n353'>353</a> <a id='n354' href='#n354'>354</a> <a id='n355' href='#n355'>355</a> <a id='n356' href='#n356'>356</a> <a id='n357' href='#n357'>357</a> <a id='n358' href='#n358'>358</a> <a id='n359' href='#n359'>359</a> <a id='n360' href='#n360'>360</a> <a id='n361' href='#n361'>361</a> <a id='n362' href='#n362'>362</a> <a id='n363' href='#n363'>363</a> <a id='n364' href='#n364'>364</a> <a id='n365' href='#n365'>365</a> <a id='n366' href='#n366'>366</a> <a id='n367' href='#n367'>367</a> <a id='n368' href='#n368'>368</a> <a id='n369' href='#n369'>369</a> <a id='n370' href='#n370'>370</a> <a id='n371' href='#n371'>371</a> <a id='n372' href='#n372'>372</a> <a id='n373' href='#n373'>373</a> <a id='n374' href='#n374'>374</a> <a id='n375' href='#n375'>375</a> <a id='n376' href='#n376'>376</a> <a id='n377' href='#n377'>377</a> <a id='n378' href='#n378'>378</a> <a id='n379' href='#n379'>379</a> <a id='n380' href='#n380'>380</a> <a id='n381' href='#n381'>381</a> <a id='n382' href='#n382'>382</a> <a id='n383' href='#n383'>383</a> <a id='n384' href='#n384'>384</a> <a id='n385' href='#n385'>385</a> <a id='n386' href='#n386'>386</a> <a id='n387' href='#n387'>387</a> <a id='n388' href='#n388'>388</a> <a id='n389' href='#n389'>389</a> <a id='n390' href='#n390'>390</a> <a id='n391' href='#n391'>391</a> <a id='n392' href='#n392'>392</a> <a id='n393' href='#n393'>393</a> <a id='n394' href='#n394'>394</a> <a id='n395' href='#n395'>395</a> <a id='n396' href='#n396'>396</a> <a id='n397' href='#n397'>397</a> <a id='n398' href='#n398'>398</a> <a id='n399' href='#n399'>399</a> <a id='n400' href='#n400'>400</a> <a id='n401' href='#n401'>401</a> <a id='n402' href='#n402'>402</a> <a id='n403' href='#n403'>403</a> <a id='n404' href='#n404'>404</a> <a id='n405' href='#n405'>405</a> <a id='n406' href='#n406'>406</a> <a id='n407' href='#n407'>407</a> <a id='n408' href='#n408'>408</a> <a id='n409' href='#n409'>409</a> <a id='n410' href='#n410'>410</a> <a id='n411' href='#n411'>411</a> <a id='n412' href='#n412'>412</a> <a id='n413' href='#n413'>413</a> <a id='n414' href='#n414'>414</a> <a id='n415' href='#n415'>415</a> <a id='n416' href='#n416'>416</a> <a id='n417' href='#n417'>417</a> <a id='n418' href='#n418'>418</a> <a id='n419' href='#n419'>419</a> <a id='n420' href='#n420'>420</a> <a id='n421' href='#n421'>421</a> <a id='n422' href='#n422'>422</a> <a id='n423' href='#n423'>423</a> <a id='n424' href='#n424'>424</a> <a id='n425' href='#n425'>425</a> <a id='n426' href='#n426'>426</a> <a id='n427' href='#n427'>427</a> <a id='n428' href='#n428'>428</a> <a id='n429' href='#n429'>429</a> <a id='n430' href='#n430'>430</a> <a id='n431' href='#n431'>431</a> <a id='n432' href='#n432'>432</a> <a id='n433' href='#n433'>433</a> <a id='n434' href='#n434'>434</a> <a id='n435' href='#n435'>435</a> <a id='n436' href='#n436'>436</a> <a id='n437' href='#n437'>437</a> <a id='n438' href='#n438'>438</a> <a id='n439' href='#n439'>439</a> <a id='n440' href='#n440'>440</a> <a id='n441' href='#n441'>441</a> <a id='n442' href='#n442'>442</a> <a id='n443' href='#n443'>443</a> <a id='n444' href='#n444'>444</a> <a id='n445' href='#n445'>445</a> <a id='n446' href='#n446'>446</a> <a id='n447' href='#n447'>447</a> <a id='n448' href='#n448'>448</a> <a id='n449' href='#n449'>449</a> <a id='n450' href='#n450'>450</a> <a id='n451' href='#n451'>451</a> <a id='n452' href='#n452'>452</a> <a id='n453' href='#n453'>453</a> <a id='n454' href='#n454'>454</a> <a id='n455' href='#n455'>455</a> <a id='n456' href='#n456'>456</a> <a id='n457' href='#n457'>457</a> <a id='n458' href='#n458'>458</a> <a id='n459' href='#n459'>459</a> <a id='n460' href='#n460'>460</a> <a id='n461' href='#n461'>461</a> <a id='n462' href='#n462'>462</a> <a id='n463' href='#n463'>463</a> <a id='n464' href='#n464'>464</a> <a id='n465' href='#n465'>465</a> <a id='n466' href='#n466'>466</a> <a id='n467' href='#n467'>467</a> <a id='n468' href='#n468'>468</a> <a id='n469' href='#n469'>469</a> <a id='n470' href='#n470'>470</a> <a id='n471' href='#n471'>471</a> <a id='n472' href='#n472'>472</a> <a id='n473' href='#n473'>473</a> <a id='n474' href='#n474'>474</a> <a id='n475' href='#n475'>475</a> <a id='n476' href='#n476'>476</a> </pre></td> <td class='lines'><pre><code><style>pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } .highlight .hll { background-color: #ffffcc } .highlight .c { color: #888 } /* Comment */ .highlight .err { color: #A61717; background-color: #E3D2D2 } /* Error */ .highlight .k { color: #080; font-weight: bold } /* Keyword */ .highlight .ch { color: #888 } /* Comment.Hashbang */ .highlight .cm { color: #888 } /* Comment.Multiline */ .highlight .cp { color: #C00; font-weight: bold } /* Comment.Preproc */ .highlight .cpf { color: #888 } /* Comment.PreprocFile */ .highlight .c1 { color: #888 } /* Comment.Single */ .highlight .cs { color: #C00; font-weight: bold; background-color: #FFF0F0 } /* Comment.Special */ .highlight .gd { color: #000; background-color: #FDD } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ .highlight .gr { color: #A00 } /* Generic.Error */ .highlight .gh { color: #333 } /* Generic.Heading */ .highlight .gi { color: #000; background-color: #DFD } /* Generic.Inserted */ .highlight .go { color: #888 } /* Generic.Output */ .highlight .gp { color: #555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666 } /* Generic.Subheading */ .highlight .gt { color: #A00 } /* Generic.Traceback */ .highlight .kc { color: #080; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #080; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #080; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #080 } /* Keyword.Pseudo */ .highlight .kr { color: #080; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #00D; font-weight: bold } /* Literal.Number */ .highlight .s { color: #D20; background-color: #FFF0F0 } /* Literal.String */ .highlight .na { color: #369 } /* Name.Attribute */ .highlight .nb { color: #038 } /* Name.Builtin */ .highlight .nc { color: #B06; font-weight: bold } /* Name.Class */ .highlight .no { color: #036; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555 } /* Name.Decorator */ .highlight .ne { color: #B06; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #06B; font-weight: bold } /* Name.Function */ .highlight .nl { color: #369; font-style: italic } /* Name.Label */ .highlight .nn { color: #B06; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #369; font-weight: bold } /* Name.Property */ .highlight .nt { color: #B06; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #369 } /* Name.Variable */ .highlight .ow { color: #080 } /* Operator.Word */ .highlight .w { color: #BBB } /* Text.Whitespace */ .highlight .mb { color: #00D; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #00D; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #00D; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #00D; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #00D; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #D20; background-color: #FFF0F0 } /* Literal.String.Affix */ .highlight .sb { color: #D20; background-color: #FFF0F0 } /* Literal.String.Backtick */ .highlight .sc { color: #D20; background-color: #FFF0F0 } /* Literal.String.Char */ .highlight .dl { color: #D20; background-color: #FFF0F0 } /* Literal.String.Delimiter */ .highlight .sd { color: #D20; background-color: #FFF0F0 } /* Literal.String.Doc */ .highlight .s2 { color: #D20; background-color: #FFF0F0 } /* Literal.String.Double */ .highlight .se { color: #04D; background-color: #FFF0F0 } /* Literal.String.Escape */ .highlight .sh { color: #D20; background-color: #FFF0F0 } /* Literal.String.Heredoc */ .highlight .si { color: #33B; background-color: #FFF0F0 } /* Literal.String.Interpol */ .highlight .sx { color: #2B2; background-color: #F0FFF0 } /* Literal.String.Other */ .highlight .sr { color: #080; background-color: #FFF0FF } /* Literal.String.Regex */ .highlight .s1 { color: #D20; background-color: #FFF0F0 } /* Literal.String.Single */ .highlight .ss { color: #A60; background-color: #FFF0F0 } /* Literal.String.Symbol */ .highlight .bp { color: #038 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #06B; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #369 } /* Name.Variable.Class */ .highlight .vg { color: #D70 } /* Name.Variable.Global */ .highlight .vi { color: #33B } /* Name.Variable.Instance */ .highlight .vm { color: #369 } /* Name.Variable.Magic */ .highlight .il { color: #00D; font-weight: bold } /* Literal.Number.Integer.Long */</style><div class="highlight"><pre><span></span>=pod =head1 NAME PEM - PEM routines =head1 SYNOPSIS #include <openssl/pem.h> EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb, void *u); EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, pem_password_cb *cb, void *u); RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, pem_password_cb *cb, void *u); RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); int PEM_write_RSAPublicKey(FILE *fp, RSA *x); RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, pem_password_cb *cb, void *u); RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, pem_password_cb *cb, void *u); DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u); DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, pem_password_cb *cb, void *u); DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_DSAparams(BIO *bp, DSA *x); int PEM_write_DSAparams(FILE *fp, DSA *x); DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); int PEM_write_bio_DHparams(BIO *bp, DH *x); int PEM_write_DHparams(FILE *fp, DH *x); X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); int PEM_write_bio_X509(BIO *bp, X509 *x); int PEM_write_X509(FILE *fp, X509 *x); X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); int PEM_write_X509_AUX(FILE *fp, X509 *x); X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, pem_password_cb *cb, void *u); X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, pem_password_cb *cb, void *u); int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, pem_password_cb *cb, void *u); X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, pem_password_cb *cb, void *u); int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); int PEM_write_PKCS7(FILE *fp, PKCS7 *x); NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE **x, pem_password_cb *cb, void *u); NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE **x, pem_password_cb *cb, void *u); int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x); int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x); =head1 DESCRIPTION The PEM functions read or write structures in PEM format. In this sense PEM format is simply base64 encoded data surrounded by header lines. For more details about the meaning of arguments see the B<PEM FUNCTION ARGUMENTS> section. Each operation has four functions associated with it. For clarity the term "B<foobar> functions" will be used to collectively refer to the PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar() and PEM_write_foobar() functions. The B<PrivateKey> functions read or write a private key in PEM format using an EVP_PKEY structure. The write routines use "traditional" private key format and can handle both RSA and DSA private keys. The read functions can additionally transparently handle PKCS#8 format encrypted and unencrypted keys too. PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption algorithms. The B<cipher> argument specifies the encryption algoritm to use: unlike all other PEM routines the encryption is applied at the PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead. PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm to use is specified in the B<nid> parameter and should be the NID of the corresponding OBJECT IDENTIFIER (see NOTES section). The B<PUBKEY> functions process a public key using an EVP_PKEY structure. The public key is encoded as a SubjectPublicKeyInfo structure. The B<RSAPrivateKey> functions process an RSA private key using an RSA structure. It handles the same formats as the B<PrivateKey> functions but an error occurs if the private key is not RSA. The B<RSAPublicKey> functions process an RSA public key using an RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey structure. The B<RSA_PUBKEY> functions also process an RSA public key using an RSA structure. However the public key is encoded using a SubjectPublicKeyInfo structure and an error occurs if the public key is not RSA. The B<DSAPrivateKey> functions process a DSA private key using a DSA structure. It handles the same formats as the B<PrivateKey> functions but an error occurs if the private key is not DSA. The B<DSA_PUBKEY> functions process a DSA public key using a DSA structure. The public key is encoded using a SubjectPublicKeyInfo structure and an error occurs if the public key is not DSA. The B<DSAparams> functions process DSA parameters using a DSA structure. The parameters are encoded using a foobar structure. The B<DHparams> functions process DH parameters using a DH structure. The parameters are encoded using a PKCS#3 DHparameter structure. The B<X509> functions process an X509 certificate using an X509 structure. They will also process a trusted X509 certificate but any trust settings are discarded. The B<X509_AUX> functions process a trusted X509 certificate using an X509 structure. The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 certificate request using an X509_REQ structure. The B<X509_REQ> write functions use B<CERTIFICATE REQUEST> in the header whereas the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> (as required by some CAs). The B<X509_REQ> read functions will handle either form so there are no B<X509_REQ_NEW> read functions. The B<X509_CRL> functions process an X509 CRL using an X509_CRL structure. The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 structure. The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate Sequence using a NETSCAPE_CERT_SEQUENCE structure. =head1 PEM FUNCTION ARGUMENTS The PEM functions have many common arguments. The B<bp> BIO parameter (if present) specifies the BIO to read from or write to. The B<fp> FILE parameter (if present) specifies the FILE pointer to read from or write to. The PEM read functions all take an argument B<TYPE **x> and return a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function uses. If B<x> is NULL then the parameter is ignored. If B<x> is not NULL but B<*x> is NULL then the structure returned will be written to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections). Irrespective of the value of B<x> a pointer to the structure is always returned (or NULL if an error occurred). The PEM functions which write private keys take an B<enc> parameter which specifies the encryption algorithm to use, encryption is done at the PEM level. If this parameter is set to NULL then the private key is written in unencrypted form. The B<cb> argument is the callback to use when querying for the pass phrase used for encrypted PEM structures (normally only private keys). For the PEM write routines if the B<kstr> parameter is not NULL then B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is ignored. If the B<cb> parameters is set to NULL and the B<u> parameter is not NULL then the B<u> parameter is interpreted as a null terminated string to use as the passphrase. If both B<cb> and B<u> are NULL then the default callback routine is used which will typically prompt for the passphrase on the current terminal with echoing turned off. The default passphrase callback is sometimes inappropriate (for example in a GUI application) so an alternative can be supplied. The callback routine has the following form: int cb(char *buf, int size, int rwflag, void *u); B<buf> is the buffer to write the passphrase to. B<size> is the maximum length of the passphrase (i.e. the size of buf). B<rwflag> is a flag which is set to 0 when reading and 1 when writing. A typical routine will ask the user to verify the passphrase (for example by prompting for it twice) if B<rwflag> is 1. The B<u> parameter has the same value as the B<u> parameter passed to the PEM routine. It allows arbitrary data to be passed to the callback by the application (for example a window handle in a GUI application). The callback B<must> return the number of characters in the passphrase or 0 if an error occurred. =head1 EXAMPLES Although the PEM routines take several arguments in almost all applications most of them are set to 0 or NULL. Read a certificate in PEM format from a BIO: X509 *x; x = PEM_read_bio_X509(bp, NULL, 0, NULL); if (x == NULL) { /* Error */ } Alternative method: X509 *x = NULL; if (!PEM_read_bio_X509(bp, &x, 0, NULL)) { /* Error */ } Write a certificate to a BIO: if (!PEM_write_bio_X509(bp, x)) { /* Error */ } Write an unencrypted private key to a FILE pointer: if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) { /* Error */ } Write a private key (using traditional format) to a BIO using triple DES encryption, the pass phrase is prompted for: if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) { /* Error */ } Write a private key (using PKCS#8 format) to a BIO using triple DES encryption, using the pass phrase "hello": if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) { /* Error */ } Read a private key from a BIO using the pass phrase "hello": key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); if (key == NULL) { /* Error */ } Read a private key from a BIO using a pass phrase callback: key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); if (key == NULL) { /* Error */ } Skeleton pass phrase callback: int pass_cb(char *buf, int size, int rwflag, void *u); { int len; char *tmp; /* We'd probably do something else if 'rwflag' is 1 */ printf("Enter pass phrase for \"%s\"\n", u); /* get pass phrase, length 'len' into 'tmp' */ tmp = "hello"; len = strlen(tmp); if (len <= 0) return 0; /* if too long, truncate */ if (len > size) len = size; memcpy(buf, tmp, len); return len; } =head1 NOTES The old B<PrivateKey> write routines are retained for compatibility. New applications should write private keys using the PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines because they are more secure (they use an iteration count of 2048 whereas the traditional routines use a count of 1) unless compatibility with older versions of OpenSSL is important. The B<PrivateKey> read routines can be used in all applications because they handle all formats transparently. A frequent cause of problems is attempting to use the PEM routines like this: X509 *x; PEM_read_bio_X509(bp, &x, 0, NULL); this is a bug because an attempt will be made to reuse the data at B<x> which is an uninitialised pointer. =head1 PEM ENCRYPTION FORMAT This old B<PrivateKey> routines use a non standard technique for encryption. The private key (or other data) takes the following form: -----BEGIN RSA PRIVATE KEY----- Proc-Type: 4,ENCRYPTED DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 ...base64 encoded data... -----END RSA PRIVATE KEY----- The line beginning DEK-Info contains two comma separated pieces of information: the encryption algorithm name as used by EVP_get_cipherbyname() and an 8 byte B<salt> encoded as a set of hexadecimal digits. After this is the base64 encoded encrypted data. The encryption key is determined using EVP_bytestokey(), using B<salt> and an iteration count of 1. The IV used is the value of B<salt> and *not* the IV returned by EVP_bytestokey(). =head1 BUGS The PEM read routines in some versions of OpenSSL will not correctly reuse an existing structure. Therefore the following: PEM_read_bio_X509(bp, &x, 0, NULL); where B<x> already contains a valid certificate, may not work, whereas: X509_free(x); x = PEM_read_bio_X509(bp, NULL, 0, NULL); is guaranteed to work. =head1 RETURN CODES The read routines return either a pointer to the structure read or NULL if an error occurred. The write routines return 1 for success or 0 for failure. </pre></div>