diff options
author | Rob Austein <sra@hactrn.net> | 2007-06-07 02:37:32 +0000 |
---|---|---|
committer | Rob Austein <sra@hactrn.net> | 2007-06-07 02:37:32 +0000 |
commit | 5dadf34209c288b8fffba1016e6a3c9446381153 (patch) | |
tree | 2ec36232cafd0da10fffda780f08a43c97d70aad /openssl/trunk/doc/HOWTO | |
parent | 6fcf9830cfea5236faf42cc3437ed4bed06c16de (diff) |
Replace hacked OpenSSL code with OpenSSL 0.9.8e distribution.
svn path=/openssl/Makefile; revision=659
Diffstat (limited to 'openssl/trunk/doc/HOWTO')
-rw-r--r-- | openssl/trunk/doc/HOWTO/certificates.txt | 105 | ||||
-rw-r--r-- | openssl/trunk/doc/HOWTO/keys.txt | 73 | ||||
-rw-r--r-- | openssl/trunk/doc/HOWTO/proxy_certificates.txt | 322 |
3 files changed, 0 insertions, 500 deletions
diff --git a/openssl/trunk/doc/HOWTO/certificates.txt b/openssl/trunk/doc/HOWTO/certificates.txt deleted file mode 100644 index a8a34c7a..00000000 --- a/openssl/trunk/doc/HOWTO/certificates.txt +++ /dev/null @@ -1,105 +0,0 @@ -<DRAFT!> - HOWTO certificates - -1. Introduction - -How you handle certificates depend a great deal on what your role is. -Your role can be one or several of: - - - User of some client software - - User of some server software - - Certificate authority - -This file is for users who wish to get a certificate of their own. -Certificate authorities should read ca.txt. - -In all the cases shown below, the standard configuration file, as -compiled into openssl, will be used. You may find it in /etc/, -/usr/local/ssl/ or somewhere else. The name is openssl.cnf, and -is better described in another HOWTO <config.txt?>. If you want to -use a different configuration file, use the argument '-config {file}' -with the command shown below. - - -2. Relationship with keys - -Certificates are related to public key cryptography by containing a -public key. To be useful, there must be a corresponding private key -somewhere. With OpenSSL, public keys are easily derived from private -keys, so before you create a certificate or a certificate request, you -need to create a private key. - -Private keys are generated with 'openssl genrsa' if you want a RSA -private key, or 'openssl gendsa' if you want a DSA private key. -Further information on how to create private keys can be found in -another HOWTO <keys.txt?>. The rest of this text assumes you have -a private key in the file privkey.pem. - - -3. Creating a certificate request - -To create a certificate, you need to start with a certificate -request (or, as some certificate authorities like to put -it, "certificate signing request", since that's exactly what they do, -they sign it and give you the result back, thus making it authentic -according to their policies). A certificate request can then be sent -to a certificate authority to get it signed into a certificate, or if -you have your own certificate authority, you may sign it yourself, or -if you need a self-signed certificate (because you just want a test -certificate or because you are setting up your own CA). - -The certificate request is created like this: - - openssl req -new -key privkey.pem -out cert.csr - -Now, cert.csr can be sent to the certificate authority, if they can -handle files in PEM format. If not, use the extra argument '-outform' -followed by the keyword for the format to use (see another HOWTO -<formats.txt?>). In some cases, that isn't sufficient and you will -have to be more creative. - -When the certificate authority has then done the checks the need to -do (and probably gotten payment from you), they will hand over your -new certificate to you. - -Section 5 will tell you more on how to handle the certificate you -received. - - -4. Creating a self-signed test certificate - -If you don't want to deal with another certificate authority, or just -want to create a test certificate for yourself. This is similar to -creating a certificate request, but creates a certificate instead of -a certificate request. This is NOT the recommended way to create a -CA certificate, see ca.txt. - - openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095 - - -5. What to do with the certificate - -If you created everything yourself, or if the certificate authority -was kind enough, your certificate is a raw DER thing in PEM format. -Your key most definitely is if you have followed the examples above. -However, some (most?) certificate authorities will encode them with -things like PKCS7 or PKCS12, or something else. Depending on your -applications, this may be perfectly OK, it all depends on what they -know how to decode. If not, There are a number of OpenSSL tools to -convert between some (most?) formats. - -So, depending on your application, you may have to convert your -certificate and your key to various formats, most often also putting -them together into one file. The ways to do this is described in -another HOWTO <formats.txt?>, I will just mention the simplest case. -In the case of a raw DER thing in PEM format, and assuming that's all -right for yor applications, simply concatenating the certificate and -the key into a new file and using that one should be enough. With -some applications, you don't even have to do that. - - -By now, you have your cetificate and your private key and can start -using the software that depend on it. - --- -Richard Levitte diff --git a/openssl/trunk/doc/HOWTO/keys.txt b/openssl/trunk/doc/HOWTO/keys.txt deleted file mode 100644 index 7ae2a3a1..00000000 --- a/openssl/trunk/doc/HOWTO/keys.txt +++ /dev/null @@ -1,73 +0,0 @@ -<DRAFT!> - HOWTO keys - -1. Introduction - -Keys are the basis of public key algorithms and PKI. Keys usually -come in pairs, with one half being the public key and the other half -being the private key. With OpenSSL, the private key contains the -public key information as well, so a public key doesn't need to be -generated separately. - -Public keys come in several flavors, using different cryptographic -algorithms. The most popular ones associated with certificates are -RSA and DSA, and this HOWTO will show how to generate each of them. - - -2. To generate a RSA key - -A RSA key can be used both for encryption and for signing. - -Generating a key for the RSA algorithm is quite easy, all you have to -do is the following: - - openssl genrsa -des3 -out privkey.pem 2048 - -With this variant, you will be prompted for a protecting password. If -you don't want your key to be protected by a password, remove the flag -'-des3' from the command line above. - - NOTE: if you intend to use the key together with a server - certificate, it may be a good thing to avoid protecting it - with a password, since that would mean someone would have to - type in the password every time the server needs to access - the key. - -The number 2048 is the size of the key, in bits. Today, 2048 or -higher is recommended for RSA keys, as fewer amount of bits is -consider insecure or to be insecure pretty soon. - - -3. To generate a DSA key - -A DSA key can be used for signing only. This is important to keep -in mind to know what kind of purposes a certificate request with a -DSA key can really be used for. - -Generating a key for the DSA algorithm is a two-step process. First, -you have to generate parameters from which to generate the key: - - openssl dsaparam -out dsaparam.pem 2048 - -The number 2048 is the size of the key, in bits. Today, 2048 or -higher is recommended for DSA keys, as fewer amount of bits is -consider insecure or to be insecure pretty soon. - -When that is done, you can generate a key using the parameters in -question (actually, several keys can be generated from the same -parameters): - - openssl gendsa -des3 -out privkey.pem dsaparam.pem - -With this variant, you will be prompted for a protecting password. If -you don't want your key to be protected by a password, remove the flag -'-des3' from the command line above. - - NOTE: if you intend to use the key together with a server - certificate, it may be a good thing to avoid protecting it - with a password, since that would mean someone would have to - type in the password every time the server needs to access - the key. - --- -Richard Levitte diff --git a/openssl/trunk/doc/HOWTO/proxy_certificates.txt b/openssl/trunk/doc/HOWTO/proxy_certificates.txt deleted file mode 100644 index 3d36b02f..00000000 --- a/openssl/trunk/doc/HOWTO/proxy_certificates.txt +++ /dev/null @@ -1,322 +0,0 @@ -<DRAFT!> - HOWTO proxy certificates - -0. WARNING - -NONE OF THE CODE PRESENTED HERE HAVE BEEN CHECKED! They are just an -example to show you how things can be done. There may be typos or -type conflicts, and you will have to resolve them. - -1. Introduction - -Proxy certificates are defined in RFC 3820. They are really usual -certificates with the mandatory extension proxyCertInfo. - -Proxy certificates are issued by an End Entity (typically a user), -either directly with the EE certificate as issuing certificate, or by -extension through an already issued proxy certificate.. They are used -to extend rights to some other entity (a computer process, typically, -or sometimes to the user itself), so it can perform operations in the -name of the owner of the EE certificate. - -See http://www.ietf.org/rfc/rfc3820.txt for more information. - - -2. A warning about proxy certificates - -Noone seems to have tested proxy certificates with security in mind. -Basically, to this date, it seems that proxy certificates have only -been used in a world that's highly aware of them. What would happen -if an unsuspecting application is to validate a chain of certificates -that contains proxy certificates? It would usually consider the leaf -to be the certificate to check for authorisation data, and since proxy -certificates are controlled by the EE certificate owner alone, it's -would be normal to consider what the EE certificate owner could do -with them. - -subjectAltName and issuerAltName are forbidden in proxy certificates, -and this is enforced in OpenSSL. The subject must be the same as the -issuer, with one commonName added on. - -Possible threats are, as far as has been imagined so far: - - - impersonation through commonName (think server certificates). - - use of additional extensions, possibly non-standard ones used in - certain environments, that would grant extra or different - authorisation rights. - -For this reason, OpenSSL requires that the use of proxy certificates -be explicitely allowed. Currently, this can be done using the -following methods: - - - if the application calls X509_verify_cert() itself, it can do the - following prior to that call (ctx is the pointer passed in the call - to X509_verify_cert()): - - X509_STORE_CTX_set_flags(ctx, X509_V_FLAG_ALLOW_PROXY_CERTS); - - - in all other cases, proxy certificate validation can be enabled - before starting the application by setting the envirnoment variable - OPENSSL_ALLOW_PROXY with some non-empty value. - -There are thoughts to allow proxy certificates with a line in the -default openssl.cnf, but that's still in the future. - - -3. How to create proxy cerificates - -It's quite easy to create proxy certificates, by taking advantage of -the lack of checks of the 'openssl x509' application (*ahem*). But -first, you need to create a configuration section that contains a -definition of the proxyCertInfo extension, a little like this: - - [ v3_proxy ] - # A proxy certificate MUST NEVER be a CA certificate. - basicConstraints=CA:FALSE - - # Usual authority key ID - authorityKeyIdentifier=keyid,issuer:always - - # Now, for the extension that marks this certificate as a proxy one - proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:1,policy:text:AB - -It's also possible to give the proxy extension in a separate section: - - proxyCertInfo=critical,@proxy_ext - - [ proxy_ext ] - language=id-ppl-anyLanguage - pathlen=0 - policy=text:BC - -The policy value has a specific syntax, {syntag}:{string}, where the -syntag determines what will be done with the string. The recognised -syntags are as follows: - - text indicates that the string is simply the bytes, not - encoded in any kind of way: - - policy=text:räksmörgås - - Previous versions of this design had a specific tag - for UTF-8 text. However, since the bytes are copied - as-is anyway, there's no need for it. Instead, use - the text: tag, like this: - - policy=text:räksmörgÃ¥s - - hex indicates the string is encoded in hex, with colons - between each byte (every second hex digit): - - policy=hex:72:E4:6B:73:6D:F6:72:67:E5:73 - - Previous versions of this design had a tag to insert a - complete DER blob. However, the only legal use for - this would be to surround the bytes that would go with - the hex: tag with what's needed to construct a correct - OCTET STRING. Since hex: does that, the DER tag felt - superfluous, and was therefore removed. - - file indicates that the text of the policy should really be - taken from a file. The string is then really a file - name. This is useful for policies that are large - (more than a few of lines) XML documents, for example. - -The 'policy' setting can be split up in multiple lines like this: - - 0.policy=This is - 1.polisy= a multi- - 2.policy=line policy. - -NOTE: the proxy policy value is the part that determines the rights -granted to the process using the proxy certificate. The value is -completely dependent on the application reading and interpretting it! - -Now that you have created an extension section for your proxy -certificate, you can now easily create a proxy certificate like this: - - openssl req -new -config openssl.cnf \ - -out proxy.req -keyout proxy.key - openssl x509 -req -CAcreateserial -in proxy.req -days 7 \ - -out proxy.crt -CA user.crt -CAkey user.key \ - -extfile openssl.cnf -extensions v3_proxy - -It's just as easy to create a proxy certificate using another proxy -certificate as issuer (note that I'm using a different configuration -section for it): - - openssl req -new -config openssl.cnf \ - -out proxy2.req -keyout proxy2.key - openssl x509 -req -CAcreateserial -in proxy2.req -days 7 \ - -out proxy2.crt -CA proxy.crt -CAkey proxy.key \ - -extfile openssl.cnf -extensions v3_proxy2 - - -4. How to have your application interpret the policy? - -The basic way to interpret proxy policies is to prepare some default -rights, then do a check of the proxy certificate against the a chain -of proxy certificates, user certificate and CA certificates, and see -what rights came out by the end. Sounds easy, huh? It almost is. - -The slightly complicated part is how to pass data between your -application and the certificate validation procedure. - -You need the following ingredients: - - - a callback routing that will be called for every certificate that's - validated. It will be called several times for each certificates, - so you must be attentive to when it's a good time to do the proxy - policy interpretation and check, as well as to fill in the defaults - when the EE certificate is checked. - - - a structure of data that's shared between your application code and - the callback. - - - a wrapper function that sets it all up. - - - an ex_data index function that creates an index into the generic - ex_data store that's attached to an X509 validation context. - -This is some cookbook code for you to fill in: - - /* In this example, I will use a view of granted rights as a bit - array, one bit for each possible right. */ - typedef struct your_rights { - unsigned char rights[total_rights / 8]; - } YOUR_RIGHTS; - - /* The following procedure will create an index for the ex_data - store in the X509 validation context the first time it's called. - Subsequent calls will return the same index. */ - static int get_proxy_auth_ex_data_idx(void) - { - static volatile int idx = -1; - if (idx < 0) - { - CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE); - if (idx < 0) - { - idx = X509_STORE_CTX_get_ex_new_index(0, - "for verify callback", - NULL,NULL,NULL); - } - CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE); - } - return idx; - } - - /* Callback to be given to the X509 validation procedure. */ - static int verify_callback(int ok, X509_STORE_CTX *ctx) - { - if (ok == 1) /* It's REALLY important you keep the proxy policy - check within this secion. It's important to know - that when ok is 1, the certificates are checked - from top to bottom. You get the CA root first, - followed by the possible chain of intermediate - CAs, followed by the EE certificate, followed by - the possible proxy certificates. */ - { - X509 *xs = ctx->current_cert; - - if (xs->ex_flags & EXFLAG_PROXY) - { - YOUR_RIGHTS *rights = - (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx, - get_proxy_auth_ex_data_idx()); - PROXY_CERT_INFO_EXTENSION *pci = - X509_get_ext_d2i(xs, NID_proxyCertInfo, NULL, NULL); - - switch (OBJ_obj2nid(pci->proxyPolicy->policyLanguage)) - { - case NID_Independent: - /* Do whatever you need to grant explicit rights to - this particular proxy certificate, usually by - pulling them from some database. If there are none - to be found, clear all rights (making this and any - subsequent proxy certificate void of any rights). - */ - memset(rights->rights, 0, sizeof(rights->rights)); - break; - case NID_id_ppl_inheritAll: - /* This is basically a NOP, we simply let the current - rights stand as they are. */ - break; - default: - /* This is usually the most complex section of code. - You really do whatever you want as long as you - follow RFC 3820. In the example we use here, the - simplest thing to do is to build another, temporary - bit array and fill it with the rights granted by - the current proxy certificate, then use it as a - mask on the accumulated rights bit array, and - voilà, you now have a new accumulated rights bit - array. */ - { - int i; - YOUR_RIGHTS tmp_rights; - memset(tmp_rights.rights, 0, sizeof(tmp_rights.rights)); - - /* process_rights() is supposed to be a procedure - that takes a string and it's length, interprets - it and sets the bits in the YOUR_RIGHTS pointed - at by the third argument. */ - process_rights((char *) pci->proxyPolicy->policy->data, - pci->proxyPolicy->policy->length, - &tmp_rights); - - for(i = 0; i < total_rights / 8; i++) - rights->rights[i] &= tmp_rights.rights[i]; - } - break; - } - PROXY_CERT_INFO_EXTENSION_free(pci); - } - else if (!(xs->ex_flags & EXFLAG_CA)) - { - /* We have a EE certificate, let's use it to set default! - */ - YOUR_RIGHTS *rights = - (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx, - get_proxy_auth_ex_data_idx()); - - /* The following procedure finds out what rights the owner - of the current certificate has, and sets them in the - YOUR_RIGHTS structure pointed at by the second - argument. */ - set_default_rights(xs, rights); - } - } - return ok; - } - - static int my_X509_verify_cert(X509_STORE_CTX *ctx, - YOUR_RIGHTS *needed_rights) - { - int i; - int (*save_verify_cb)(int ok,X509_STORE_CTX *ctx) = ctx->verify_cb; - YOUR_RIGHTS rights; - - X509_STORE_CTX_set_verify_cb(ctx, verify_callback); - X509_STORE_CTX_set_ex_data(ctx, get_proxy_auth_ex_data_idx(), &rights); - X509_STORE_CTX_set_flags(ctx, X509_V_FLAG_ALLOW_PROXY_CERTS); - ok = X509_verify_cert(ctx); - - if (ok == 1) - { - ok = check_needed_rights(rights, needed_rights); - } - - X509_STORE_CTX_set_verify_cb(ctx, save_verify_cb); - - return ok; - } - -If you use SSL or TLS, you can easily set up a callback to have the -certificates checked properly, using the code above: - - SSL_CTX_set_cert_verify_callback(s_ctx, my_X509_verify_cert, &needed_rights); - - --- -Richard Levitte |