aboutsummaryrefslogtreecommitdiff
path: root/openssl/trunk/crypto/x509v3/v3_addr.c
blob: 4df042db7ff2ad36f23b8e2d76d7888027261856 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
generated by cgit v1.2.3 (git 2.25.1) at 2025-06-22 04:08:14 +0000
 


href='#n976'>976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * Contributed to the OpenSSL Project by the American Registry for
 * Internet Numbers ("ARIN").
 */
/* ====================================================================
 * Copyright (c) 2006 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    licensing@OpenSSL.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 */

/*
 * Implementation of RFC 3779 section 2.2.
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "cryptlib.h"
#include <openssl/conf.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/x509v3.h>

#ifdef OPENSSL_RFC3779

/*
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
 */

ASN1_SEQUENCE(IPAddressRange) = {
  ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END(IPAddressRange)

ASN1_CHOICE(IPAddressOrRange) = {
  ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
} ASN1_CHOICE_END(IPAddressOrRange)

ASN1_CHOICE(IPAddressChoice) = {
  ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
  ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
} ASN1_CHOICE_END(IPAddressChoice)

ASN1_SEQUENCE(IPAddressFamily) = {
  ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
  ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
} ASN1_SEQUENCE_END(IPAddressFamily)

ASN1_ITEM_TEMPLATE(IPAddrBlocks) = 
  ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
			IPAddrBlocks, IPAddressFamily)
ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)

IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)

/*
 * How much buffer space do we need for a raw address?
 */
#define ADDR_RAW_BUF_LEN	16

/*
 * What's the address length associated with this AFI?
 */
static int length_from_afi(const unsigned afi)
{
  switch (afi) {
  case IANA_AFI_IPV4:
    return 4;
  case IANA_AFI_IPV6:
    return 16;
  default:
    return 0;
  }
}

/*
 * Extract the AFI from an IPAddressFamily.
 */
unsigned v3_addr_get_afi(const IPAddressFamily *f)
{
  return ((f != NULL &&
	   f->addressFamily != NULL &&
	   f->addressFamily->data != NULL)
	  ? ((f->addressFamily->data[0] << 8) |
	     (f->addressFamily->data[1]))
	  : 0);
}

/*
 * Expand the bitstring form of an address into a raw byte array.
 * At the moment this is coded for simplicity, not speed.
 */
static void addr_expand(unsigned char *addr,
			const ASN1_BIT_STRING *bs,
			const int length,
			const unsigned char fill)
{
  assert(bs->length >= 0 && bs->length <= length);
  if (bs->length > 0) {
    memcpy(addr, bs->data, bs->length);
    if ((bs->flags & 7) != 0) {
      unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
      if (fill == 0)
	addr[bs->length - 1] &= ~mask;
      else
	addr[bs->length - 1] |= mask;
    }
  }
  memset(addr + bs->length, fill, length - bs->length);
}

/*
 * Extract the prefix length from a bitstring.
 */
#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))

/*
 * i2r handler for one address bitstring.
 */
static int i2r_address(BIO *out,
		       const unsigned afi,
		       const unsigned char fill,
		       const ASN1_BIT_STRING *bs)
{
  unsigned char addr[ADDR_RAW_BUF_LEN];
  int i, n;

  switch (afi) {
  case IANA_AFI_IPV4:
    addr_expand(addr, bs, 4, fill);
    BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
    break;
  case IANA_AFI_IPV6:
    addr_expand(addr, bs, 16, fill);
    for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
      ;
    for (i = 0; i < n; i += 2)
      BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
    if (i < 16)
      BIO_puts(out, ":");
    break;
  default:
    for (i = 0; i < bs->length; i++)
      BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
    BIO_printf(out, "[%d]", (int) (bs->flags & 7));
    break;
  }
  return 1;
}

/*
 * i2r handler for a sequence of addresses and ranges.
 */
static int i2r_IPAddressOrRanges(BIO *out,
				 const int indent,
				 const IPAddressOrRanges *aors,
				 const unsigned afi)
{
  int i;
  for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
    const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
    BIO_printf(out, "%*s", indent, "");
    switch (aor->type) {
    case IPAddressOrRange_addressPrefix:
      if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
	return 0;
      BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
      continue;
    case IPAddressOrRange_addressRange:
      if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
	return 0;
      BIO_puts(out, "-");
      if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
	return 0;
      BIO_puts(out, "\n");
      continue;
    }
  }
  return 1;
}

/*
 * i2r handler for an IPAddrBlocks extension.
 */
static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
			    void *ext,
			    BIO *out,
			    int indent)
{
  const IPAddrBlocks *addr = ext;
  int i;
  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
    const unsigned afi = v3_addr_get_afi(f);
    switch (afi) {
    case IANA_AFI_IPV4:
      BIO_printf(out, "%*sIPv4", indent, "");
      break;
    case IANA_AFI_IPV6:
      BIO_printf(out, "%*sIPv6", indent, "");
      break;
    default:
      BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
      break;
    }
    if (f->addressFamily->length > 2) {
      switch (f->addressFamily->data[2]) {
      case   1:
	BIO_puts(out, " (Unicast)");
	break;
      case   2:
	BIO_puts(out, " (Multicast)");
	break;
      case   3:
	BIO_puts(out, " (Unicast/Multicast)");
	break;
      case   4:
	BIO_puts(out, " (MPLS)");
	break;
      case  64:
	BIO_puts(out, " (Tunnel)");
	break;
      case  65:
	BIO_puts(out, " (VPLS)");
	break;
      case  66:
	BIO_puts(out, " (BGP MDT)");
	break;
      case 128:
	BIO_puts(out, " (MPLS-labeled VPN)");
	break;
      default:  
	BIO_printf(out, " (Unknown SAFI %u)",
		   (unsigned) f->addressFamily->data[2]);
	break;
      }
    }
    switch (f->ipAddressChoice->type) {
    case IPAddressChoice_inherit:
      BIO_puts(out, ": inherit\n");
      break;
    case IPAddressChoice_addressesOrRanges:
      BIO_puts(out, ":\n");
      if (!i2r_IPAddressOrRanges(out,
				 indent + 2,
				 f->ipAddressChoice->u.addressesOrRanges,
				 afi))
	return 0;
      break;
    }
  }
  return 1;
}

/*
 * Sort comparison function for a sequence of IPAddressOrRange
 * elements.
 */
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
				const IPAddressOrRange *b,
				const int length)
{
  unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  int prefixlen_a, prefixlen_b;
  int r;

  switch (a->type) {
  case IPAddressOrRange_addressPrefix:
    addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
    prefixlen_a = addr_prefixlen(a->u.addressPrefix);
    break;
  case IPAddressOrRange_addressRange:
    addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
    prefixlen_a = length * 8;
    break;
  }

  switch (b->type) {
  case IPAddressOrRange_addressPrefix:
    addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
    prefixlen_b = addr_prefixlen(b->u.addressPrefix);
    break;
  case IPAddressOrRange_addressRange:
    addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
    prefixlen_b = length * 8;
    break;
  }

  if ((r = memcmp(addr_a, addr_b, length)) != 0)
    return r;
  else
    return prefixlen_a - prefixlen_b;
}

/*
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
 * comparision routines are only allowed two arguments.
 */
static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
				  const IPAddressOrRange * const *b)
{
  return IPAddressOrRange_cmp(*a, *b, 4);
}

/*
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
 * comparision routines are only allowed two arguments.
 */
static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
				  const IPAddressOrRange * const *b)
{
  return IPAddressOrRange_cmp(*a, *b, 16);
}

/*
 * Calculate whether a range collapses to a prefix.
 * See last paragraph of RFC 3779 2.2.3.7.
 */
static int range_should_be_prefix(const unsigned char *min,
				  const unsigned char *max,
				  const int length)
{
  unsigned char mask;
  int i, j;

  for (i = 0; i < length && min[i] == max[i]; i++)
    ;
  for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
    ;
  if (i < j)
    return -1;
  if (i > j)
    return i * 8;
  mask = min[i] ^ max[i];
  switch (mask) {
  case 0x01: j = 7; break;
  case 0x03: j = 6; break;
  case 0x07: j = 5; break;
  case 0x0F: j = 4; break;
  case 0x1F: j = 3; break;
  case 0x3F: j = 2; break;
  case 0x7F: j = 1; break;
  default:   return -1;
  }
  if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
    return -1;
  else
    return i * 8 + j;
}

/*
 * Construct a prefix.
 */
static int make_addressPrefix(IPAddressOrRange **result,
			      unsigned char *addr,
			      const int prefixlen)
{
  int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  IPAddressOrRange *aor = IPAddressOrRange_new();

  if (aor == NULL)
    return 0;
  aor->type = IPAddressOrRange_addressPrefix;
  if (aor->u.addressPrefix == NULL &&
      (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
    goto err;
  if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
    goto err;
  aor->u.addressPrefix->flags &= ~7;
  aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  if (bitlen > 0) {
    aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
    aor->u.addressPrefix->flags |= 8 - bitlen;
  }
  
  *result = aor;
  return 1;

 err:
  IPAddressOrRange_free(aor);
  return 0;
}

/*
 * Construct a range.  If it can be expressed as a prefix,
 * return a prefix instead.  Doing this here simplifies
 * the rest of the code considerably.
 */
static int make_addressRange(IPAddressOrRange **result,
			     unsigned char *min,
			     unsigned char *max,
			     const int length)
{
  IPAddressOrRange *aor;
  int i, prefixlen;

  if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
    return make_addressPrefix(result, min, prefixlen);

  if ((aor = IPAddressOrRange_new()) == NULL)
    return 0;
  aor->type = IPAddressOrRange_addressRange;
  assert(aor->u.addressRange == NULL);
  if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
    goto err;
  if (aor->u.addressRange->min == NULL &&
      (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
    goto err;
  if (aor->u.addressRange->max == NULL &&
      (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
    goto err;

  for (i = length; i > 0 && min[i - 1] == 0x00; --i)
    ;
  if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
    goto err;
  aor->u.addressRange->min->flags &= ~7;
  aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  if (i > 0) {
    unsigned char b = min[i - 1];
    int j = 1;
    while ((b & (0xFFU >> j)) != 0) 
      ++j;
    aor->u.addressRange->min->flags |= 8 - j;
  }

  for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
    ;
  if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
    goto err;
  aor->u.addressRange->max->flags &= ~7;
  aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  if (i > 0) {
    unsigned char b = max[i - 1];
    int j = 1;
    while ((b & (0xFFU >> j)) != (0xFFU >> j))
      ++j;
    aor->u.addressRange->max->flags |= 8 - j;
  }

  *result = aor;
  return 1;

 err:
  IPAddressOrRange_free(aor);
  return 0;
}

/*
 * Construct a new address family or find an existing one.
 */
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
					     const unsigned afi,
					     const unsigned *safi)
{
  IPAddressFamily *f;
  unsigned char key[3];
  unsigned keylen;
  int i;

  key[0] = (afi >> 8) & 0xFF;
  key[1] = afi & 0xFF;
  if (safi != NULL) {
    key[2] = *safi & 0xFF;
    keylen = 3;
  } else {
    keylen = 2;
  }

  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
    f = sk_IPAddressFamily_value(addr, i);
    assert(f->addressFamily->data != NULL);
    if (f->addressFamily->length == keylen &&
	!memcmp(f->addressFamily->data, key, keylen))
      return f;
  }

  if ((f = IPAddressFamily_new()) == NULL)
    goto err;
  if (f->ipAddressChoice == NULL &&
      (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
    goto err;
  if (f->addressFamily == NULL && 
      (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
    goto err;
  if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
    goto err;
  if (!sk_IPAddressFamily_push(addr, f))
    goto err;

  return f;

 err:
  IPAddressFamily_free(f);
  return NULL;
}

/*
 * Add an inheritance element.
 */
int v3_addr_add_inherit(IPAddrBlocks *addr,
			const unsigned afi,
			const unsigned *safi)
{
  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  if (f == NULL ||
      f->ipAddressChoice == NULL ||
      (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
       f->ipAddressChoice->u.addressesOrRanges != NULL))
    return 0;
  if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
      f->ipAddressChoice->u.inherit != NULL)
    return 1;
  if (f->ipAddressChoice->u.inherit == NULL &&
      (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
    return 0;
  f->ipAddressChoice->type = IPAddressChoice_inherit;
  return 1;
}

/*
 * Construct an IPAddressOrRange sequence, or return an existing one.
 */
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
					       const unsigned afi,
					       const unsigned *safi)
{
  IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  IPAddressOrRanges *aors = NULL;

  if (f == NULL ||
      f->ipAddressChoice == NULL ||
      (f->ipAddressChoice->type == IPAddressChoice_inherit &&
       f->ipAddressChoice->u.inherit != NULL))
    return NULL;
  if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
    aors = f->ipAddressChoice->u.addressesOrRanges;
  if (aors != NULL)
    return aors;
  if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
    return NULL;
  switch (afi) {
  case IANA_AFI_IPV4:
    sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
    break;
  case IANA_AFI_IPV6:
    sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
    break;
  }
  f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  f->ipAddressChoice->u.addressesOrRanges = aors;
  return aors;
}

/*
 * Add a prefix.
 */
int v3_addr_add_prefix(IPAddrBlocks *addr,
		       const unsigned afi,
		       const unsigned *safi,
		       unsigned char *a,
		       const int prefixlen)
{
  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  IPAddressOrRange *aor;
  if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
    return 0;
  if (sk_IPAddressOrRange_push(aors, aor))
    return 1;
  IPAddressOrRange_free(aor);
  return 0;
}

/*
 * Add a range.
 */
int v3_addr_add_range(IPAddrBlocks *addr,
		      const unsigned afi,
		      const unsigned *safi,
		      unsigned char *min,
		      unsigned char *max)
{
  IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  IPAddressOrRange *aor;
  int length = length_from_afi(afi);
  if (aors == NULL)
    return 0;
  if (!make_addressRange(&aor, min, max, length))
    return 0;
  if (sk_IPAddressOrRange_push(aors, aor))
    return 1;
  IPAddressOrRange_free(aor);
  return 0;
}

/*
 * Extract min and max values from an IPAddressOrRange.
 */
static void extract_min_max(IPAddressOrRange *aor,
			    unsigned char *min,
			    unsigned char *max,
			    int length)
{
  assert(aor != NULL && min != NULL && max != NULL);
  switch (aor->type) {
  case IPAddressOrRange_addressPrefix:
    addr_expand(min, aor->u.addressPrefix, length, 0x00);
    addr_expand(max, aor->u.addressPrefix, length, 0xFF);
    return;
  case IPAddressOrRange_addressRange:
    addr_expand(min, aor->u.addressRange->min, length, 0x00);
    addr_expand(max, aor->u.addressRange->max, length, 0xFF);
    return;
  }
}

/*
 * Public wrapper for extract_min_max().
 */
int v3_addr_get_range(IPAddressOrRange *aor,
		      const unsigned afi,
		      unsigned char *min,
		      unsigned char *max,
		      const int length)
{
  int afi_length = length_from_afi(afi);
  if (aor == NULL || min == NULL || max == NULL ||
      afi_length == 0 || length < afi_length ||
      (aor->type != IPAddressOrRange_addressPrefix &&
       aor->type != IPAddressOrRange_addressRange))
    return 0;
  extract_min_max(aor, min, max, afi_length);
  return afi_length;
}

/*
 * Sort comparision function for a sequence of IPAddressFamily.
 *
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
 * the ordering: I can read it as meaning that IPv6 without a SAFI
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
 * examples in appendix B suggest that the author intended the
 * null-SAFI rule to apply only within a single AFI, which is what I
 * would have expected and is what the following code implements.
 */
static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
			       const IPAddressFamily * const *b_)
{
  const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  int len = ((a->length <= b->length) ? a->length : b->length);
  int cmp = memcmp(a->data, b->data, len);
  return cmp ? cmp : a->length - b->length;
}

/*
 * Check whether an IPAddrBLocks is in canonical form.
 */
int v3_addr_is_canonical(IPAddrBlocks *addr)
{
  unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  IPAddressOrRanges *aors;
  int i, j, k;

  /*
   * Empty extension is cannonical.
   */
  if (addr == NULL)
    return 1;

  /*
   * Check whether the top-level list is in order.
   */
  for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
    const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
    const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
    if (IPAddressFamily_cmp(&a, &b) >= 0)
      return 0;
  }

  /*
   * Top level's ok, now check each address family.
   */
  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
    int length = length_from_afi(v3_addr_get_afi(f));

    /*
     * Inheritance is canonical.  Anything other than inheritance or
     * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
     */
    if (f == NULL || f->ipAddressChoice == NULL)
      return 0;
    switch (f->ipAddressChoice->type) {
    case IPAddressChoice_inherit:
      continue;
    case IPAddressChoice_addressesOrRanges:
      break;
    default:
      return 0;
    }

    /*
     * It's an IPAddressOrRanges sequence, check it.
     */
    aors = f->ipAddressChoice->u.addressesOrRanges;
    if (sk_IPAddressOrRange_num(aors) == 0)
      return 0;
    for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
      IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);

      extract_min_max(a, a_min, a_max, length);
      extract_min_max(b, b_min, b_max, length);

      /*
       * Punt misordered list, overlapping start, or inverted range.
       */
      if (memcmp(a_min, b_min, length) >= 0 ||
	  memcmp(a_min, a_max, length) > 0 ||
	  memcmp(b_min, b_max, length) > 0)
	return 0;

      /*
       * Punt if adjacent or overlapping.  Check for adjacency by
       * subtracting one from b_min first.
       */
      for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
	;
      if (memcmp(a_max, b_min, length) >= 0)
	return 0;

      /*
       * Check for range that should be expressed as a prefix.
       */
      if (a->type == IPAddressOrRange_addressRange &&
	  range_should_be_prefix(a_min, a_max, length) >= 0)
	return 0;
    }

    /*
     * Check final range to see if it should be a prefix.
     */
    j = sk_IPAddressOrRange_num(aors) - 1;
    {
      IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
      if (a->type == IPAddressOrRange_addressRange) {
	extract_min_max(a, a_min, a_max, length);
	if (range_should_be_prefix(a_min, a_max, length) >= 0)
	  return 0;
      }
    }
  }

  /*
   * If we made it through all that, we're happy.
   */
  return 1;
}

/*
 * Whack an IPAddressOrRanges into canonical form.
 */
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
				      const unsigned afi)
{
  int i, j, length = length_from_afi(afi);

  /*
   * Sort the IPAddressOrRanges sequence.
   */
  sk_IPAddressOrRange_sort(aors);

  /*
   * Clean up representation issues, punt on duplicates or overlaps.
   */
  for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
    IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
    IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];

    extract_min_max(a, a_min, a_max, length);
    extract_min_max(b, b_min, b_max, length);

    /*
     * Punt overlaps.
     */
    if (memcmp(a_max, b_min, length) >= 0)
      return 0;

    /*
     * Merge if a and b are adjacent.  We check for
     * adjacency by subtracting one from b_min first.
     */
    for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
      ;
    if (memcmp(a_max, b_min, length) == 0) {
      IPAddressOrRange *merged;
      if (!make_addressRange(&merged, a_min, b_max, length))
	return 0;
      sk_IPAddressOrRange_set(aors, i, merged);
      sk_IPAddressOrRange_delete(aors, i + 1);
      IPAddressOrRange_free(a);
      IPAddressOrRange_free(b);
      --i;
      continue;
    }
  }

  return 1;
}

/*
 * Whack an IPAddrBlocks extension into canonical form.
 */
int v3_addr_canonize(IPAddrBlocks *addr)
{
  int i;
  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
	!IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
				    v3_addr_get_afi(f)))
      return 0;
  }
  sk_IPAddressFamily_sort(addr);
  assert(v3_addr_is_canonical(addr));
  return 1;
}

/*
 * v2i handler for the IPAddrBlocks extension.
 */
static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
			      struct v3_ext_ctx *ctx,
			      STACK_OF(CONF_VALUE) *values)
{
  static const char v4addr_chars[] = "0123456789.";
  static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  IPAddrBlocks *addr = NULL;
  char *s = NULL, *t;
  int i;
  
  if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
    X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
    return NULL;
  }

  for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
    CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
    unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
    unsigned afi, *safi = NULL, safi_;
    const char *addr_chars;
    int prefixlen, i1, i2, delim, length;

    if (       !name_cmp(val->name, "IPv4")) {
      afi = IANA_AFI_IPV4;
    } else if (!name_cmp(val->name, "IPv6")) {
      afi = IANA_AFI_IPV6;
    } else if (!name_cmp(val->name, "IPv4-SAFI")) {
      afi = IANA_AFI_IPV4;
      safi = &safi_;
    } else if (!name_cmp(val->name, "IPv6-SAFI")) {
      afi = IANA_AFI_IPV6;
      safi = &safi_;
    } else {
      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
      X509V3_conf_err(val);
      goto err;
    }

    switch (afi) {
    case IANA_AFI_IPV4:
      addr_chars = v4addr_chars;
      break;
    case IANA_AFI_IPV6:
      addr_chars = v6addr_chars;
      break;
    }

    length = length_from_afi(afi);

    /*
     * Handle SAFI, if any, and strdup() so we can null-terminate
     * the other input values.
     */
    if (safi != NULL) {
      *safi = strtoul(val->value, &t, 0);
      t += strspn(t, " \t");
      if (*safi > 0xFF || *t++ != ':') {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
	X509V3_conf_err(val);
	goto err;
      }
      t += strspn(t, " \t");
      s = strdup(t);
    } else {
      s = strdup(val->value);
    }
    if (s == NULL) {
      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
      goto err;
    }

    /*
     * Check for inheritance.  Not worth additional complexity to
     * optimize this (seldom-used) case.
     */
    if (!strcmp(s, "inherit")) {
      if (!v3_addr_add_inherit(addr, afi, safi)) {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
	X509V3_conf_err(val);
	goto err;
      }
      OPENSSL_free(s);
      s = NULL;
      continue;
    }

    i1 = strspn(s, addr_chars);
    i2 = i1 + strspn(s + i1, " \t");
    delim = s[i2++];
    s[i1] = '\0';

    if (a2i_ipadd(min, s) != length) {
      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
      X509V3_conf_err(val);
      goto err;
    }

    switch (delim) {
    case '/':
      prefixlen = (int) strtoul(s + i2, &t, 10);
      if (t == s + i2 || *t != '\0') {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
	X509V3_conf_err(val);
	goto err;
      }
      if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
	goto err;
      }
      break;
    case '-':
      i1 = i2 + strspn(s + i2, " \t");
      i2 = i1 + strspn(s + i1, addr_chars);
      if (i1 == i2 || s[i2] != '\0') {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
	X509V3_conf_err(val);
	goto err;
      }
      if (a2i_ipadd(max, s + i1) != length) {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
	X509V3_conf_err(val);
	goto err;
      }
      if (!v3_addr_add_range(addr, afi, safi, min, max)) {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
	goto err;
      }
      break;
    case '\0':
      if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
	X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
	goto err;
      }
      break;
    default:
      X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
      X509V3_conf_err(val);
      goto err;
    }

    OPENSSL_free(s);
    s = NULL;
  }

  /*
   * Canonize the result, then we're done.
   */
  if (!v3_addr_canonize(addr))
    goto err;    
  return addr;

 err:
  OPENSSL_free(s);
  sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  return NULL;
}

/*
 * OpenSSL dispatch
 */
X509V3_EXT_METHOD v3_addr = {
  NID_sbgp_ipAddrBlock,		/* nid */
  0,				/* flags */
  ASN1_ITEM_ref(IPAddrBlocks),	/* template */
  0, 0, 0, 0,			/* old functions, ignored */
  0,				/* i2s */
  0,				/* s2i */
  0,				/* i2v */
  v2i_IPAddrBlocks,		/* v2i */
  i2r_IPAddrBlocks,		/* i2r */
  0,				/* r2i */
  NULL				/* extension-specific data */
};

/*
 * Figure out whether extension sues inheritance.
 */
int v3_addr_inherits(IPAddrBlocks *addr)
{
  int i;
  if (addr == NULL)
    return 0;
  for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
    IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
    if (f->ipAddressChoice->type == IPAddressChoice_inherit)
      return 1;
  }
  return 0;
}

/*
 * Figure out whether parent contains child.
 */
static int addr_contains(IPAddressOrRanges *parent,
			 IPAddressOrRanges *child,
			 int length)
{
  unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  int p, c;

  if (child == NULL || parent == child)
    return 1;
  if (parent == NULL)
    return 0;

  p = 0;
  for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
    extract_min_max(sk_IPAddressOrRange_value(child, c),
		    c_min, c_max, length);
    for (;; p++) {
      if (p >= sk_IPAddressOrRange_num(parent))
	return 0;
      extract_min_max(sk_IPAddressOrRange_value(parent, p),
		      p_min, p_max, length);
      if (memcmp(p_max, c_max, length) < 0)
	continue;
      if (memcmp(p_min, c_min, length) > 0)
	return 0;
      break;
    }
  }

  return 1;
}

/*
 * Test whether a is a subset of b.
 */
int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
{
  int i;
  if (a == NULL || a == b)
    return 1;
  if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
    return 0;
  sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
    IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
    int j = sk_IPAddressFamily_find(b, fa);
    IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
    if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, 
		       fa->ipAddressChoice->u.addressesOrRanges,
		       length_from_afi(v3_addr_get_afi(fb))))
      return 0;
  }
  return 1;
}

/*
 * Validation error handling via callback.
 */
#define validation_err(_err_)		\
  do {					\
    if (ctx != NULL) {			\
      ctx->error = _err_;		\
      ctx->error_depth = i;		\
      ctx->current_cert = x;		\
      ret = ctx->verify_cb(0, ctx);	\
    } else {				\
      ret = 0;				\
    }					\
    if (!ret)				\
      goto done;			\
  } while (0)

/*
 * Core code for RFC 3779 2.3 path validation.
 */
static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
					  STACK_OF(X509) *chain,
					  IPAddrBlocks *ext)
{
  IPAddrBlocks *child = NULL;
  int i, j, ret = 1;
  X509 *x;

  assert(chain != NULL && sk_X509_num(chain) > 0);
  assert(ctx != NULL || ext != NULL);
  assert(ctx == NULL || ctx->verify_cb != NULL);

  /*
   * Figure out where to start.  If we don't have an extension to
   * check, we're done.  Otherwise, check canonical form and
   * set up for walking up the chain.
   */
  if (ext != NULL) {
    i = -1;
  } else {
    i = 0;
    x = sk_X509_value(chain, i);
    assert(x != NULL);
    if ((ext = x->rfc3779_addr) == NULL)
      goto done;
  }
  if (!v3_addr_is_canonical(ext))
    validation_err(X509_V_ERR_INVALID_EXTENSION);
  sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
    X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
    ret = 0;
    goto done;
  }

  /*
   * Now walk up the chain.  No cert may list resources that its
   * parent doesn't list.
   */
  for (i++; i < sk_X509_num(chain); i++) {
    x = sk_X509_value(chain, i);
    assert(x != NULL);
    if (!v3_addr_is_canonical(x->rfc3779_addr))
      validation_err(X509_V_ERR_INVALID_EXTENSION);
    if (x->rfc3779_addr == NULL) {
      for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
	IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
	if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
	  break;
	}
      }
      continue;
    }
    sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
    for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
      IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
      int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
      if (fp == NULL) {
	if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
	  break;
	}
	continue;
      }
      if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
	if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
	    addr_contains(fp->ipAddressChoice->u.addressesOrRanges, 
			  fc->ipAddressChoice->u.addressesOrRanges,
			  length_from_afi(v3_addr_get_afi(fc))))
	  sk_IPAddressFamily_set(child, j, fp);
	else
	  validation_err(X509_V_ERR_UNNESTED_RESOURCE);
      }
    }
  }

  /*
   * Trust anchor can't inherit.
   */
  if (x->rfc3779_addr != NULL) {
    for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
      IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
      if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
	  sk_IPAddressFamily_find(child, fp) >= 0)
	validation_err(X509_V_ERR_UNNESTED_RESOURCE);
    }
  }

 done:
  sk_IPAddressFamily_free(child);
  return ret;
}

#undef validation_err

/*
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
 */
int v3_addr_validate_path(X509_STORE_CTX *ctx)
{
  return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
}

/*
 * RFC 3779 2.3 path validation of an extension.
 * Test whether chain covers extension.
 */
int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
				  IPAddrBlocks *ext,
				  int allow_inheritance)
{
  if (ext == NULL)
    return 1;
  if (chain == NULL || sk_X509_num(chain) == 0)
    return 0;
  if (!allow_inheritance && v3_addr_inherits(ext))
    return 0;
  return v3_addr_validate_path_internal(NULL, chain, ext);
}

#endif /* OPENSSL_RFC3779 */